You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

577 lines
20 KiB

#ifndef LSFS_DISK_CONTROLLER_H
#define LSFS_DISK_CONTROLLER_H
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#include <unistd.h>
#include "lsfs_string.h"
typedef struct Directory_Table Directory_Table;
typedef struct struct_table_entry struct_table_entry;
typedef struct struct_partition_control partition_control;
typedef struct struct_partition_control partition_control;
typedef struct File_System_Control_Information FSCI;
typedef struct meta_information_format mif;
typedef struct tag_record tag_record;
typedef struct lsfs_file lsfs_file;
typedef enum Table_Entry_Kind Table_Entry_Kind;
typedef uint64_t lsfs_sector_offset;
typedef lsfs_sector_offset lsfs_file_id;
//typedef uint64_t sector_index;
static FILE* disk;
static partition_control p_control;
int create_file_system();
int lsfs_disk_create_entry(const char* path, Table_Entry_Kind entry_kind);
Directory_Table* lsfs_find_directory(const char* path, bool drop_filename);
int lsfs_disk_getattr(lsfs_file* find_file, const char *path);
int lsfs_disk_delete_file(lsfs_file_id file_id);
int get_free_sectors_table();
int get_free_sectors(int num_sectors_needed, lsfs_sector_offset* output_array);
int lsfs_disk_read_data_from_file(lsfs_file* file, int buffer_size, void* buffer_for_data);
int lsfs_disk_write_data_to_file(lsfs_file* file, int data_length, char *data);
int lsfs_disk_rename_file(lsfs_file* file, const char* new_filename);
int lsfs_disk_load_disk();
int write_data_to_disk(lsfs_sector_offset at_sector, uint32_t file_block_size, void* data_to_write);
int read_data_from_disk(lsfs_sector_offset index, uint32_t file_block_size, void* data_buffer);
int write_data_to_disk_off(lsfs_sector_offset index, void* data_to_write, int offset);
int save_modified_file_information(lsfs_file* file);
#define SECTOR_SIZE 512
#define NUMBER_OF_MBR_PARTITIONS 4
#define DEFAULT_FILE_SIZE 4 // This is in sectors
#define DEFAULT_TABLE_SIZE 10
#define NUM_DATA_POINTERS 28
typedef enum Table_Entry_Kind
{
// These are specific values since, is has to corrospond to the implementation in assembly
ENTRY_EMPTY = 0,
ENTRY_FILE = 1,
ENTRY_DIRECTORY = 2,
} Table_Entry_Kind;
typedef struct Partition_Entry
{
uint8_t active_falg; // This has value 0x80 if it is a bootable partition / it is an active partition.
uint8_t CHS_start_addr[3]; // [0] = H, [1] = S, [2] = C
uint8_t partition_type; // This has a value such that one can idenfity which file system the partition is.
uint8_t CHS_last_addr[3]; // [0] = H, [1] = S, [2] = C
uint32_t LBA_abs_first_sector;
uint32_t number_of_sectors;
} __attribute__((packed)) Partition_Entry;
typedef struct Master_Boot_record
{
uint8_t offset_on_disk[446]; // The code for the bootloader
Partition_Entry partitions[4];
uint8_t master_tag_records[2]; // Signature
} __attribute__((packed)) Master_Boot_record;
typedef struct struct_table_entry
{
char filename[256];
lsfs_file_id file_id;
uint64_t file_size;
mif* ext_file_data;
uint32_t file_block_size; // This tells how many block there are allocated for the specific file. eg. we read this amount of bloks for the file.
uint8_t entry_kind;
uint8_t extra_control_bits1;
uint8_t extra_control_bits2;
uint8_t extra_control_bits3;
lsfs_sector_offset data_pointer[NUM_DATA_POINTERS]; // if it is a directory, the first pointer will be to the next table.
} __attribute__((packed)) table_entry;
typedef struct Directory_Table
{
struct_table_entry entries[10];
} __attribute__((packed)) Directory_Table;
typedef struct File_System_Control_Information
{
char filesyste_information[256];
uint64_t master_table_index;
uint64_t this_partition_offset_on_disk;
uint64_t next_free_sector;
uint64_t next_uniqe_id; // both files and directories gets this.
uint64_t next_sector_reuse_pointer;
uint64_t last_sector_index_on_partition;
uint64_t maximum_sectors_on_disk;
uint64_t sectors_size_on_disk;
uint64_t not_used[24];
} __attribute__((packed)) FSCI;
typedef struct struct_partition_control
{
FSCI fsci;
Directory_Table master_table;
} __attribute__((packed)) partition_control;
typedef struct meta_information_format {
char filename[246]; // remeber that the 246 bytes has to be a /0 terminator..
uint32_t owner_id;
lsfs_file_id tags[32];
uint64_t file_size;
uint32_t control_bits;
/* not pressent - Permission key table 64 bytes sha-265 pr. key*/
uint64_t creation_date;
uint64_t last_modification_data;
uint64_t last_access_date;
/*
* 256 first pointers in direct mapping to data
* 94 next pointers is a pointer
* 94 next pointers to pointers to data
*/
lsfs_sector_offset one_level_pointer_data[NUM_DATA_POINTERS];
lsfs_sector_offset two_level_pointer_data[94];
lsfs_sector_offset three_level_pointer_data[94];
} __attribute__((packed)) mif;
typedef struct tag_record {
/* SIZE 16 bytes */
lsfs_file_id mif_record;
struct {
uint64_t is_filename : 1;
} control_bits;
} __attribute__((packed)) tag_record;
typedef struct lsfs_file {
lsfs_file_id file_id;
lsfs_sector_offset table_entry_pointer;
Table_Entry_Kind entry_kind;
char* filename;
uint32_t owner_id;
uint64_t size;
uint64_t creation_date;
uint64_t access_time;
uint64_t modification_time;
uint32_t file_block_size;
lsfs_sector_offset *data;
} lsfs_file;
Directory_Table* lsfs_find_directory(const char *path, bool drop_filename)
{
Directory_Table *dir_table = &p_control.master_table;
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
int number_of_traversal = split_path.length;
if (drop_filename)
{
number_of_traversal -= 1;
}
// Start from the master table
for (int i = 0; i < number_of_traversal; ++i)
{
for (int j = 0; j < DEFAULT_TABLE_SIZE; ++j)
{
if (strcmp(dir_table->entries[j].filename, split_path.strings[i].chars) == 0)
{
if (i == 0)
{
// Alocate space, we refuse this further on
dir_table = malloc(sizeof(Directory_Table));
}
read_data_from_disk(dir_table->entries[j].data_pointer[0], DEFAULT_TABLE_SIZE, dir_table);
break;
}
}
}
return dir_table;
}
int lsfs_disk_getattr(lsfs_file* find_file, const char* path) {
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
lsfs_string filename = split_path.strings[split_path.length-1];
// Start from the master table
Directory_Table *dir_table = lsfs_find_directory(path, true);
for (int i = 0; i < DEFAULT_TABLE_SIZE; ++i)
{
if(strcmp( filename.chars, dir_table->entries[i].filename ) == 0) {
time_t current_time;
time ( &current_time );
find_file->file_id = dir_table->entries[i].file_id;
find_file->entry_kind = dir_table->entries[i].entry_kind;
find_file->table_entry_pointer = i;
find_file->filename = dir_table->entries[i].filename;
find_file->owner_id = getuid();
find_file->size = dir_table->entries[i].file_size; // dir_table->entries[i].data_pointer[0]; //;
find_file->creation_date = (uint64_t) current_time;
find_file->access_time = (uint64_t) current_time;
find_file->modification_time = (uint64_t) current_time;
find_file->data = dir_table->entries[i].data_pointer;
find_file->file_block_size = 1; // TODO: should be loaded from disk.
return 1;
}
}
return 0;
}
int lsfs_disk_read_data_from_file(lsfs_file *file, int buffer_size, void* buffer_for_data) {
// TODO some offset, to tell where in the file we want to write
int return_val = 0;
for (int i = 0; i < NUM_DATA_POINTERS; ++i) {
if(file->data[i] == 0) {
break;
}
return_val += read_data_from_disk(file->data[i], file->file_block_size, buffer_for_data + (SECTOR_SIZE * i));
}
//time_t current_time;
//time ( &current_time );
//mif_record->last_access_date = (uint64_t) current_time;
//write_data_to_disk(file_id, mif_record);
//free(mif_record);
return return_val;
}
static inline time_t lsfs_disk_update_timestamps(lsfs_file *file) {
return file->modification_time = file->access_time = time(NULL);
}
#define lsfs_num_sectors_for_size(x) (((x)+SECTOR_SIZE-1)&~(SECTOR_SIZE-1))
int lsfs_disk_write_data_to_file(lsfs_file *file, int data_length, char *data) {
int written;
int amount_written = data_length;
lsfs_sector_offset current_sector = file->size / SECTOR_SIZE;
unsigned int offset_in_sector = file->size % SECTOR_SIZE;
char *tmp_buffer = calloc(file->file_block_size, SECTOR_SIZE);
assert(tmp_buffer);
read_data_from_disk(file->data[current_sector], file->file_block_size, tmp_buffer);
memcpy(tmp_buffer + offset_in_sector, data, SECTOR_SIZE-offset_in_sector);
data_length -= SECTOR_SIZE-offset_in_sector;
if (data_length < 0) {
data_length = 0;
}
for (;;) {
assert(current_sector <= NUM_DATA_POINTERS);
written = written + write_data_to_disk(p_control.master_table.entries[file->file_id].data_pointer[current_sector], 4, tmp_buffer);
if (data_length <= 0) break;
data += SECTOR_SIZE;
if (data_length >= SECTOR_SIZE) {
memcpy(tmp_buffer, data, SECTOR_SIZE);
data_length -= SECTOR_SIZE;
}
else {
memset(tmp_buffer, 0, SECTOR_SIZE);
memcpy(tmp_buffer, data, data_length);
data_length = 0;
}
}
amount_written -= data_length;
free(tmp_buffer);
//lsfs_disk_update_timestamps(&mif_record);
file->size += amount_written; // update file size
save_modified_file_information(file);
//write_data_to_disk(file->file_id, 4, &p_control.master_table[file->file_id]);
return amount_written;
}
time_t lsfs_disk_truncate_file(lsfs_file *file, off_t offset) {
//mif file_mif;
//read_data_from_disk(file_id, &file_mif);
time_t result = lsfs_disk_update_timestamps(file);
file->size = (int) offset; // p_control.master_table.entries[i].data_pointer[0]; //;
save_modified_file_information(file);
//write_data_to_disk(file->file_id, 4, NULL);
return result;
}
int lsfs_disk_rename_file(lsfs_file* file, const char* new_filename) {
memset(file->filename, 0, 256);
sprintf(file->filename, "%s", new_filename);
time_t current_time;
time ( &current_time );
file->access_time = (uint64_t) current_time;
file->modification_time = (uint64_t) current_time;
save_modified_file_information(file);
return 1;
}
int lsfs_disk_delete_file(lsfs_file_id file_id) {
mif* mif_record = calloc(1, SECTOR_SIZE);
read_data_from_disk(file_id, 1, mif_record);
// TODO Delete/free all data sectors.
// Delete/free the mif record sector.
free(mif_record);
return 1;
}
int get_free_sectors_table() {
// We need DEFAULT_TABLE_SIZE sectors straight contigious for a table
// Otherwise the file system cannot make a new table.
// We return the offset where the table is starting.
// If we cannot assing DEFAULT_TABLE_SIZE sectors, we report errror.
int return_index = p_control.fsci.next_free_sector;
if ((p_control.fsci.next_free_sector + DEFAULT_TABLE_SIZE) > p_control.fsci.last_sector_index_on_partition)
{
// We don't have space, report error
return -EINVAL;
}
p_control.fsci.next_free_sector += DEFAULT_TABLE_SIZE;
fseek ( disk , (p_control.fsci.this_partition_offset_on_disk) * SECTOR_SIZE, SEEK_SET );
fwrite(&p_control.fsci, 1, SECTOR_SIZE, disk);
return return_index;
}
int get_free_sectors(int num_sectors_needed, lsfs_sector_offset* output_array) {
if ((p_control.fsci.next_free_sector + num_sectors_needed) > p_control.fsci.last_sector_index_on_partition )
{
// We cannot assign what we want.
return -EINVAL;
}
for (int i = 0; i < num_sectors_needed; ++i)
{
output_array[i] = p_control.fsci.next_free_sector;
p_control.fsci.next_free_sector += DEFAULT_FILE_SIZE;
}
fseek ( disk , (p_control.fsci.this_partition_offset_on_disk) * SECTOR_SIZE, SEEK_SET );
fwrite(&p_control.fsci, 1, SECTOR_SIZE, disk);
return 0;
}
int create_file_system() {
//char* sector_to_write;
// make default File System Control information (FSCI)
// first integer says how many pointers we got
// to master tag tables
// Second and forward is the pointers to the master Tag Tables
// we need the first number to allocate memory at one go.
int* zero_buffer;
FSCI fsci;
fsci.this_partition_offset_on_disk = 1;
//fsci.maximum_sectors_on_partition = 1048576; // Max 4GiB
fsci.next_free_sector = 257;
fseek ( disk , 0, SEEK_SET );
fwrite(&fsci, 1, sizeof(fsci), disk);
zero_buffer = calloc(1, (4096 - sizeof(fsci)));
fwrite(zero_buffer, 1, (4096 - sizeof(fsci)), disk);
free(zero_buffer);
/* MASTER TAG TABLE */
table_entry master_table[DEFAULT_TABLE_SIZE];
memset(master_table, 0, (DEFAULT_TABLE_SIZE * sizeof(table_entry)));
fwrite(&master_table, 1, sizeof(master_table), disk);
zero_buffer = calloc(1, 16);
fwrite(zero_buffer, 1, 16, disk);
free(zero_buffer);
return 0;
}
int lsfs_disk_load_disk() {
// Find the partition talbe:
// This makes is BIOS dependent.
// UEFI is not supported.
Master_Boot_record mbr;
fseek( disk , 0 * SECTOR_SIZE, SEEK_SET );
fread(&mbr, 1, sizeof(mbr), disk);
for (int i = 0; i < NUMBER_OF_MBR_PARTITIONS; ++i)
{
// TODO (Jørn) We maybe wnat to optimize, such that we can detect if we have more than one partition opn the system.
if (mbr.partitions[i].partition_type == 0x18)
{
printf("%d\n", mbr.partitions[i].LBA_abs_first_sector);
// First we find the File system control information.
fseek ( disk , mbr.partitions[i].LBA_abs_first_sector * SECTOR_SIZE, SEEK_SET );
fread(&p_control.fsci, 1, SECTOR_SIZE , disk);
//printf("next free sector: %d\n", p_control.fsci.next_free_sector);
//printf("next free ID: %d\n", p_control.fsci.next_uniqe_id);
// next we find the Mater Table.
fseek ( disk , (mbr.partitions[i].LBA_abs_first_sector + 1) * SECTOR_SIZE, SEEK_SET );
fread(&p_control.master_table, 1, DEFAULT_TABLE_SIZE * SECTOR_SIZE , disk);
return 1;
}
}
return 0;
}
int lsfs_disk_create_entry(const char* path, Table_Entry_Kind entry_kind)
{
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
lsfs_string filename = split_path.strings[split_path.length-1];
// Start from the master table
int free_index = -1; // -1 is no index found.
Directory_Table *dir_table = &p_control.master_table;
lsfs_sector_offset table_disk_position = p_control.fsci.master_table_index;
for (int i = 0; i < split_path.length; ++i)
{
for (int j = 0; j < DEFAULT_TABLE_SIZE; ++j)
{
if (i == (split_path.length - 1))
{
// Find free index and be sure that there dosent exist a file with the same name.
if (dir_table->entries[j].entry_kind == ENTRY_EMPTY)
{
// Set the free index, continue to see if the filename exist.
// if not -1, we have found a better index.
if (free_index == -1)
{
printf("Index found for file: %d\n", j);
table_disk_position += j; // Abselout index in file system
free_index = j;
}
}
else if (strcmp(dir_table->entries[j].filename, split_path.strings[i].chars) == 0)
{
// Abort mission, we have a file with the same name.
return -EINVAL;
}
}
else
{
if (strcmp(dir_table->entries[j].filename, split_path.strings[i].chars) == 0)
{
// We have found the next directory to traverse.
if (i == 0)
{
// Alocate space, we refuse this further on
dir_table = malloc(sizeof(Directory_Table));
}
printf("Get next dir\n");
table_disk_position = dir_table->entries[j].data_pointer[0];
read_data_from_disk(table_disk_position, DEFAULT_TABLE_SIZE, dir_table);
break;
}
}
}
}
if (free_index == -1)
{
// The table is full, and we cannot create an entry
return -EINVAL;
}
// Find the entry for the file in the table structure:
dir_table->entries[free_index].file_id = p_control.fsci.next_uniqe_id;
p_control.fsci.next_uniqe_id++;
sprintf(dir_table->entries[free_index].filename, "%s", filename.chars);
dir_table->entries[free_index].entry_kind = entry_kind;
if (entry_kind == ENTRY_DIRECTORY)
{
dir_table->entries[free_index].data_pointer[0] = get_free_sectors_table();
dir_table->entries[free_index].file_size = DEFAULT_TABLE_SIZE * SECTOR_SIZE;
}
else if (entry_kind == ENTRY_FILE)
{
// We assign one data pointer consiting of DEFAULT_FILE_SIZE sectors
dir_table->entries[free_index].file_size = 0;
get_free_sectors_table(1, dir_table->entries[free_index].data_pointer);
}
else
{
return -EINVAL;
}
/*
find_file->creation_date = (uint64_t) current_time;
find_file->access_time = (uint64_t) current_time;
find_file->modification_time = (uint64_t) current_time;
find_file->data = p_control.master_table.entries[i].data_pointer;
find_file->owner_id = getuid();
new_file_data.owner_id = getuid();
time_t current_time;
time ( &current_time );
*/
write_data_to_disk(table_disk_position, 1, &dir_table->entries[free_index]);
return 0;
}
int save_modified_file_information(lsfs_file* file) {
// Write the file struct into the table_entry, such that we can save the data correct.
p_control.master_table.entries[file->table_entry_pointer].file_id = file->file_id;
memcpy(p_control.master_table.entries[file->table_entry_pointer].filename, file->filename, 256);
p_control.master_table.entries[file->table_entry_pointer].file_size = file->size; // p_control.master_table.entries[i].data_pointer[0]; //;
//p_control.master_table.entries[i].data_pointer = find_file->data;
write_data_to_disk(file->table_entry_pointer, file->file_block_size, &p_control.master_table.entries[file->table_entry_pointer]);
return 0;
}
int write_data_to_disk(lsfs_sector_offset index, uint32_t file_block_size, void* data_to_write) {
fseek ( disk, (index * SECTOR_SIZE), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int written = fwrite(data_to_write, 1, (file_block_size * SECTOR_SIZE), disk);
return written;
}
int write_data_to_disk_off(lsfs_sector_offset index, void* data_to_write, int offset) {
fseek ( disk, (index * SECTOR_SIZE) + offset, SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int written = fwrite(data_to_write, 1, (4 * SECTOR_SIZE), disk);
return written;
}
int read_data_from_disk(lsfs_sector_offset index, uint32_t file_block_size, void* data_buffer) {
fseek ( disk, (index * SECTOR_SIZE ), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int read = fread(data_buffer, 1, (file_block_size * SECTOR_SIZE), disk);
return read;
}
#endif