You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

893 lines
32 KiB

#ifndef LSFS_DISK_CONTROLLER_H
#define LSFS_DISK_CONTROLLER_H
#include <errno.h>
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#include <unistd.h>
#include "lsfs_string.h"
typedef struct Directory_Table Directory_Table;
typedef struct struct_table_entry struct_table_entry;
typedef struct struct_partition_control partition_control;
typedef struct File_System_Control_Information FSCI;
typedef struct meta_information_format mif;
typedef struct tag_record tag_record;
typedef struct lsfs_file lsfs_file;
typedef uint64_t lsfs_sector_offset;
typedef lsfs_sector_offset lsfs_file_id;
typedef enum
{
// These are specific values since, is has to corrospond to the implementation in assembly
ENTRY_EMPTY = 0,
ENTRY_FILE = 1,
ENTRY_DIRECTORY = 2,
} Table_Entry_Kind;
//typedef uint64_t sector_index;
static FILE* disk = NULL;
static partition_control p_control;
static time_t timestamp_loading;
int create_file_system(char* disk_name, char hdd_or_partition, uint64_t filesystem_size_in_MB);
int lsfs_disk_create_entry(const char* path, Table_Entry_Kind entry_kind);
Directory_Table* lsfs_find_directory(const char* path, bool drop_filename);
int lsfs_disk_getattr(lsfs_file* find_file, const char *path);
int lsfs_disk_delete_entry(lsfs_file *file);
int get_free_sectors_table();
int get_free_sectors(int num_sectors_needed, struct_table_entry* table_entry);
int lsfs_disk_read_data_from_file(lsfs_file *file, int data_length, char *data, int64_t offset_to_next_entry);
int lsfs_disk_write_data_to_file(lsfs_file* file, int data_length, char *data, int64_t offset_to_next_entry);
int lsfs_disk_rename_file(const char* old_filename_, const char* new_filename);
int lsfs_disk_load_disk(char* diskname);
int write_data_to_disk(lsfs_sector_offset at_sector, uint32_t number_sectors, void* data_to_write);
int write_data_to_disk_off(lsfs_sector_offset index, uint32_t number_sectors, void* data_to_write, int offset);
int read_data_from_disk(lsfs_sector_offset index, uint32_t number_sectors, void* data_buffer);
int read_data_from_disk_off(lsfs_sector_offset index, uint32_t number_sectors, void* data_to_write, int offset);
int save_modified_file_information(lsfs_file* file);
#define SPACE_MBR_RECORD 32 // 2048 // Sectors
#define SPACE_VBR_RECORD 32 // 2048 // Sectors
#define SIZE_FSCI_RECORD 1 // Sectors
#define DEFAULT_ENTRY_SIZE 1 // Sectors
#define SECTOR_SIZE 512 // BYTES
#define NUMBER_OF_MBR_PARTITIONS 4
#define DEFAULT_DATA_POINTER_SIZE 8 // This is in sectors
#define DEFAULT_TABLE_SIZE 8 // 16
#define NUM_DATA_POINTERS 27
typedef struct Partition_Entry
{
uint8_t active_falg; // This has value 0x80 if it is a bootable partition / it is an active partition.
uint8_t CHS_start_addr[3]; // [0] = H, [1] = S, [2] = C
uint8_t partition_type; // This has a value such that one can idenfity which file system the partition is.
uint8_t CHS_last_addr[3]; // [0] = H, [1] = S, [2] = C
uint32_t LBA_abs_first_sector;
uint32_t number_of_sectors;
} __attribute__((packed)) Partition_Entry;
typedef struct Master_Boot_record
{
uint8_t code[446]; // The code for the bootloader
Partition_Entry partitions[4];
uint16_t mbr_signature; // Signature
} __attribute__((packed)) Master_Boot_record;
typedef struct Volume_Boot_record
{
uint8_t code[446]; // The code for the bootloader
uint64_t vbr_size_in_bytes; // Signature
uint64_t vbr_LBA_address;
uint64_t vbr_LBA_FSCI_position;
uint64_t not_used[5];
uint16_t vbr_signature; // Signature
} __attribute__((packed)) Volume_Boot_record;
typedef struct struct_table_entry
{
char filename[256];
lsfs_file_id file_id;
uint64_t file_size;
mif* ext_file_data;
uint32_t number_sectors; // This tells how many block there are allocated for the specific file. eg. we read this amount of bloks for the file.
uint8_t entry_kind;
uint8_t extra_control_bits1;
uint8_t extra_control_bits2;
uint8_t extra_control_bits3;
lsfs_sector_offset table_entry_sector_index;
lsfs_sector_offset data_pointer[NUM_DATA_POINTERS]; // if it is a directory, the first pointer will be to the next table.
} __attribute__((packed)) Table_Entry;
typedef struct Directory_Table
{
struct_table_entry entries[DEFAULT_TABLE_SIZE];
} __attribute__((packed)) Directory_Table;
typedef struct File_System_Control_Information
{
char filesystem_information[256];
lsfs_sector_offset master_table_index;
lsfs_sector_offset this_partition_offset_on_disk;
lsfs_sector_offset next_free_sector;
uint64_t next_uniqe_id; // both files and directories gets this.
lsfs_sector_offset next_sector_reuse_pointer;
lsfs_sector_offset last_sector_index_on_partition;
lsfs_sector_offset maximum_sectors_on_disk;
lsfs_sector_offset sector_size_on_disk;
uint64_t not_used[24];
} __attribute__((packed)) FSCI;
typedef struct struct_partition_control
{
FSCI fsci;
Directory_Table master_table;
} __attribute__((packed)) partition_control;
typedef struct meta_information_format {
char filename[246]; // remeber that the 246 bytes has to be a /0 terminator..
uint32_t owner_id;
lsfs_file_id tags[32];
uint64_t file_size;
uint32_t control_bits;
/* not pressent - Permission key table 64 bytes sha-265 pr. key*/
uint64_t creation_date;
uint64_t last_modification_data;
uint64_t last_access_date;
/*
* 256 first pointers in direct mapping to data
* 94 next pointers is a pointer
* 94 next pointers to pointers to data
*/
lsfs_sector_offset one_level_pointer_data[NUM_DATA_POINTERS];
lsfs_sector_offset two_level_pointer_data[94];
lsfs_sector_offset three_level_pointer_data[94];
} __attribute__((packed)) mif;
typedef struct tag_record {
/* SIZE 16 bytes */
lsfs_file_id mif_record;
struct {
uint64_t is_filename : 1;
} control_bits;
} __attribute__((packed)) tag_record;
typedef struct lsfs_file {
lsfs_file_id file_id;
lsfs_sector_offset table_entry_pointer;
struct_table_entry* table_backpointer;
Table_Entry_Kind entry_kind;
char* filename;
uint32_t owner_id;
uint64_t size;
uint64_t creation_date;
uint64_t access_time;
uint64_t modification_time;
uint32_t number_sectors;
lsfs_sector_offset table_entry_sector_index;
lsfs_sector_offset data_pointer[NUM_DATA_POINTERS];
} lsfs_file;
Directory_Table* lsfs_find_directory(const char *path, bool drop_filename)
{
Directory_Table *dir_table = calloc(1, sizeof(Directory_Table));
// printf("Table index: %lu \n",p_control.fsci.master_table_index );
read_data_from_disk(p_control.fsci.master_table_index, DEFAULT_TABLE_SIZE, dir_table);
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
int number_of_traversal = split_path.length;
if (drop_filename)
{
number_of_traversal -= 1;
}
// Start from the master table
for (int i = 0; i < number_of_traversal; ++i)
{
for (int j = 0; j < DEFAULT_TABLE_SIZE; ++j)
{
if (strcmp(dir_table->entries[j].filename, split_path.strings[i].chars) == 0)
{
int index_sector = dir_table->entries[j].data_pointer[0];
// printf("Table index: %lu \n",index_sector );
read_data_from_disk(index_sector, DEFAULT_TABLE_SIZE, dir_table);
break;
}
}
}
return dir_table;
}
int lsfs_disk_getattr(lsfs_file* find_file, const char* path) {
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
lsfs_string filename = split_path.strings[split_path.length-1];
// Start from the master table
Directory_Table *dir_table = lsfs_find_directory(path, true);
for (int i = 0; i < DEFAULT_TABLE_SIZE; ++i)
{
if(strcmp( filename.chars, dir_table->entries[i].filename ) == 0)
{
find_file->table_backpointer = &(dir_table->entries[i]);
find_file->file_id = dir_table->entries[i].file_id;
find_file->entry_kind = dir_table->entries[i].entry_kind;
find_file->table_entry_pointer = i;
find_file->filename = dir_table->entries[i].filename;
find_file->table_entry_sector_index = dir_table->entries[i].table_entry_sector_index;
find_file->owner_id = getuid();
find_file->size = dir_table->entries[i].file_size; // dir_table->entries[i].data_pointer[0]; //;
find_file->creation_date = (uint64_t) timestamp_loading;
find_file->access_time = (uint64_t) timestamp_loading;
find_file->modification_time = (uint64_t) timestamp_loading;
memcpy(find_file->data_pointer, dir_table->entries[i].data_pointer, NUM_DATA_POINTERS * 8);
find_file->number_sectors = 1; // TODO: should be loaded from disk.
return 1;
}
}
return 0;
}
int lsfs_disk_read_data_from_file(lsfs_file *file, int buffer_size, char *data, int64_t offset_to_next_entry)
{
int data_length = file->size - offset_to_next_entry;
int amount_read = 0;
int amount_to_read = 0;
int remaining_offset = offset_to_next_entry;
//printf("READ: buffer_size: %d\n", buffer_size);
//printf("READ: Data length: %d\n", data_length);
//printf("READ: Offset length: %d\n", offset_to_next_entry);
int data_pointer_index = 0; // start at first data pointer.
if (data_length > buffer_size)
{
data_length = buffer_size;
}
while(data_length > 0) // We have more to write
{
//printf("READ: Remaing Data length: %d\n", data_length);
if (remaining_offset == 0)
{
char *tmp_buffer = calloc(DEFAULT_DATA_POINTER_SIZE, SECTOR_SIZE);
assert(tmp_buffer);
if (data_length < (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE))
{
amount_to_read = data_length;
}
else
{
amount_to_read = (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE);
}
//read_data_from_disk(lsfs_sector_offset index, uint32_t number_sectors, void* data_buffer)
if (file->data_pointer[data_pointer_index] == 0)
{
break;
}
read_data_from_disk(file->data_pointer[data_pointer_index], DEFAULT_DATA_POINTER_SIZE, tmp_buffer);
memcpy((data + amount_read), tmp_buffer, amount_to_read);
data_length -= amount_to_read;
amount_read += amount_to_read;
data_pointer_index++;
free(tmp_buffer);
}
else if (remaining_offset < (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE))
{
char *tmp_buffer = calloc(1, (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE));
assert(tmp_buffer);
if (data_length < ((DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE) - remaining_offset) )
{
amount_to_read = data_length;
}
else
{
amount_to_read = ((DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE) - remaining_offset);
}
read_data_from_disk(file->data_pointer[data_pointer_index], DEFAULT_DATA_POINTER_SIZE, tmp_buffer);
memcpy(data, (tmp_buffer + remaining_offset), amount_to_read);
data_length -= amount_to_read;
amount_read += amount_to_read;
remaining_offset -= amount_to_read;
data_pointer_index++;
free(tmp_buffer);
}
else
{
// We have to skip a whole data pointer:
remaining_offset -= (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE);
data_pointer_index++;
}
}
time_t current_time;
time ( &current_time );
file->access_time = current_time;
return amount_read;
}
static inline time_t lsfs_disk_update_timestamps(lsfs_file *file) {
return file->modification_time = file->access_time = time(NULL);
}
#define lsfs_num_sectors_for_size(x) (((x)+SECTOR_SIZE-1)&~(SECTOR_SIZE-1))
int lsfs_disk_write_data_to_file(lsfs_file *file, int data_length, char *data, int64_t offset_to_next_entry)
{
int new_filesize = data_length + offset_to_next_entry;
int amount_written = 0;
int amount_to_write = 0;
//printf("Data length: %d\n", data_length);
//printf("Offset length: %d\n", offset_to_next_entry);
int data_pointer_index = 0; // start at first data pointer.
while(data_length > 0) // We have more to write
{
while (file->data_pointer[data_pointer_index] == 0)
{
// we have to assign a free sector
if (get_free_sectors(1, file->table_backpointer))
{
// This is a fail case, we cannot assign a new sector:
return amount_written;
}
}
if (offset_to_next_entry == 0)
{
char *tmp_buffer = calloc(DEFAULT_DATA_POINTER_SIZE, SECTOR_SIZE);
assert(tmp_buffer);
if (data_length < (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE))
{
amount_to_write = data_length;
}
else
{
amount_to_write = (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE);
}
memcpy(tmp_buffer, (data + amount_written), amount_to_write);
data_length -= amount_to_write;
amount_written += amount_to_write;
write_data_to_disk(file->data_pointer[data_pointer_index], DEFAULT_DATA_POINTER_SIZE, tmp_buffer);
data_pointer_index++;
free(tmp_buffer);
}
else if (offset_to_next_entry < (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE))
{
char *tmp_buffer = calloc(1, (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE));
assert(tmp_buffer);
read_data_from_disk(file->data_pointer[data_pointer_index], DEFAULT_DATA_POINTER_SIZE, tmp_buffer);
if (data_length < ((DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE) - offset_to_next_entry) )
{
amount_to_write = data_length;
}
else
{
amount_to_write = ((DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE) - offset_to_next_entry);
}
memcpy(tmp_buffer + offset_to_next_entry, data, amount_to_write);
data_length -= amount_to_write;
amount_written += amount_to_write;
offset_to_next_entry -= amount_to_write;
write_data_to_disk(file->data_pointer[data_pointer_index], DEFAULT_DATA_POINTER_SIZE, tmp_buffer);
data_pointer_index++;
free(tmp_buffer);
}
else
{
// We have to skip a whole data pointer:
offset_to_next_entry -= (DEFAULT_DATA_POINTER_SIZE * SECTOR_SIZE);
//printf("Skip, offset is now: %d\n", offset_to_next_entry);
data_pointer_index++;
}
}
time_t current_time;
time ( &current_time );
//lsfs_disk_update_timestamps(&mif_record);
file->size = new_filesize; // update file size
file->access_time = current_time;
file->modification_time = current_time;
save_modified_file_information(file);
//write_data_to_disk(file->file_id, 4, &p_control.master_table[file->file_id]);
// Should return the total new file size
//printf("We Think that we have written: %d \n", amount_written);
return amount_written;
}
time_t lsfs_disk_truncate_file(lsfs_file *file, off_t offset) {
//mif file_mif;
//read_data_from_disk(file_id, &file_mif);
time_t result = lsfs_disk_update_timestamps(file);
file->size = (int) offset; // p_control.master_table.entries[i].data_pointer[0]; //;
save_modified_file_information(file);
//write_data_to_disk(file->file_id, 4, NULL);
return result;
}
int lsfs_disk_rename_file(const char* old_filename, const char* new_filename) {
lsfs_file *old_file = calloc(1, sizeof(lsfs_file));
lsfs_file *new_file = calloc(1, sizeof(lsfs_file));
lsfs_disk_getattr(old_file, old_filename);
if (old_file->entry_kind == ENTRY_FILE)
{
lsfs_disk_create_entry(new_filename, ENTRY_FILE);
}
else
{
lsfs_disk_create_entry(new_filename, ENTRY_DIRECTORY);
}
lsfs_disk_getattr(new_file, new_filename);
new_file->file_id = old_file->file_id;
new_file->size = old_file->size;
// TODO(Jørn) The data pointer assignt to the new file should be released.
memcpy(new_file->data_pointer, old_file->data_pointer, NUM_DATA_POINTERS * 8);
save_modified_file_information(new_file);
lsfs_disk_delete_entry(old_file);
return 0;
}
int lsfs_disk_delete_entry(lsfs_file *file) {
//printf("file: %s - has been deleted \n", file->filename);
Table_Entry *zero_buffer = calloc(1, (DEFAULT_ENTRY_SIZE * SECTOR_SIZE));
//read_data_from_disk(file_id, 1, mif_record);
write_data_to_disk(file->table_entry_sector_index, DEFAULT_ENTRY_SIZE, zero_buffer);
free(zero_buffer);
return 1;
}
int lsfs_disk_delete_directory(const char *path) {
// Find the directory and check if this is empty for entries:
Directory_Table *directory_table = calloc(1, (DEFAULT_ENTRY_SIZE * SECTOR_SIZE));
directory_table = lsfs_find_directory(path, false);
bool empty = true;
for (int i = 0; i < DEFAULT_TABLE_SIZE; ++i)
{
if (directory_table->entries[i].entry_kind != 0)
{
empty = false;
}
}
free(directory_table);
if (!empty)
{
return 1;
}
lsfs_file *file = calloc(1, sizeof(lsfs_file));
lsfs_disk_getattr(file, path);
Table_Entry *zero_buffer = calloc(1, (DEFAULT_ENTRY_SIZE * SECTOR_SIZE));
//read_data_from_disk(file_id, 1, mif_record);
write_data_to_disk(file->table_entry_sector_index, DEFAULT_ENTRY_SIZE, zero_buffer);
free(zero_buffer);
return 0;
}
int get_free_sectors_table() {
// We need DEFAULT_TABLE_SIZE sectors straight contigious for a table
// Otherwise the file system cannot make a new table.
// We return the offset where the table is starting.
// If we cannot assing DEFAULT_TABLE_SIZE sectors, we report errror.
int return_index = p_control.fsci.next_free_sector;
if ((p_control.fsci.next_free_sector + DEFAULT_TABLE_SIZE) > p_control.fsci.last_sector_index_on_partition)
{
// We don't have space, report error
return -EINVAL;
}
p_control.fsci.next_free_sector += DEFAULT_TABLE_SIZE;
fseek ( disk , ((p_control.fsci.this_partition_offset_on_disk) * SECTOR_SIZE), SEEK_SET );
fwrite(&p_control.fsci, 1, SECTOR_SIZE, disk);
//printf("Table has got assigned Sector: %d\n", return_index);
return return_index;
}
int get_free_sectors(int num_sectors_needed, struct_table_entry* table_entry) {
if ((p_control.fsci.next_free_sector + num_sectors_needed) > p_control.fsci.last_sector_index_on_partition )
{
// We cannot assign what we want.
return -EINVAL;
}
int i = 0;
while (num_sectors_needed > 0)
{
if (i > NUM_DATA_POINTERS)
{
return -EINVAL; // We don't have any more data pointers.
}
if (table_entry->data_pointer[i] == 0)
{
// If free we can assign:
table_entry->data_pointer[i] = p_control.fsci.next_free_sector;
p_control.fsci.next_free_sector += DEFAULT_DATA_POINTER_SIZE;
num_sectors_needed--;
}
i++;
}
fseek ( disk , (p_control.fsci.this_partition_offset_on_disk) * SECTOR_SIZE, SEEK_SET );
fwrite(&p_control.fsci, 1, SECTOR_SIZE, disk);
return 0;
}
int create_file_system(char* disk_name, char hdd_or_partition, uint64_t filesystem_size_in_MB) {
//char* sector_to_write;
// make default File System Control information (FSCI)
// first integer says how many pointers we got
// to master tag tables
// Second and forward is the pointers to the master Tag Tables
// we need the first number to allocate memory at one go.
FSCI *fsci = calloc(1, sizeof(FSCI));
// Create disk on host system:
disk = fopen ( disk_name , "wb" );
ftruncate(fileno(disk), (filesystem_size_in_MB * 2048 * 512));
if (hdd_or_partition == '1')
{
// This is the create hdd case
// This means that we setup the partition table.
Master_Boot_record *mbr = calloc(1, sizeof(Master_Boot_record));
mbr->partitions[0].partition_type = 0x18;
mbr->partitions[0].LBA_abs_first_sector = SPACE_MBR_RECORD;
mbr->partitions[0].number_of_sectors = filesystem_size_in_MB * 2048;
mbr->mbr_signature = 0xaa55;
write_data_to_disk(0, 1, mbr); // Write this to the first sector of the disk.
}
if ((hdd_or_partition == '1') || (hdd_or_partition == '2'))
{
// This is just a single partition
// And then the file system is the only thing in the system.
sprintf(fsci->filesystem_information, "LSFS v1.0.0-a4\r\n(LessSimpelFileSystem)(Generated by the disk_manager_utility.c)\r\nDeveloped to SingOS and QuasiOS\r\nby Jorn Guldberg\r\n");
if (hdd_or_partition == '1')
{
fsci->this_partition_offset_on_disk = SPACE_MBR_RECORD + SPACE_VBR_RECORD;
}
else
{
fsci->this_partition_offset_on_disk = SPACE_VBR_RECORD;
}
fsci->master_table_index = fsci->this_partition_offset_on_disk + 1;
fsci->next_free_sector = fsci->master_table_index + DEFAULT_TABLE_SIZE;
fsci->next_uniqe_id = 1;
fsci->next_sector_reuse_pointer = 0;
fsci->last_sector_index_on_partition = filesystem_size_in_MB * 2048; // Todo, this is the ssectors pr MB, this should not be hardcoded.
fsci->maximum_sectors_on_disk = filesystem_size_in_MB * 2048; //TODO(Jørn) Not in use yet
fsci->sector_size_on_disk = SECTOR_SIZE;
}
else
{
// This is an error case, and we should not hit this case.
assert(NULL);
}
write_data_to_disk(fsci->this_partition_offset_on_disk, 1, fsci);
lsfs_disk_load_disk(NULL); // Reload disk
return 0;
}
int lsfs_disk_install_bootloader(char *bootloader_name)
{
FILE *bootloader = fopen ( bootloader_name , "r+b" );
Master_Boot_record *bootloader_mbr = calloc(1, sizeof(Master_Boot_record));
fseek(bootloader, 0 * SECTOR_SIZE, SEEK_SET);
fread(bootloader_mbr, 1, SECTOR_SIZE, bootloader);
Master_Boot_record *mbr = calloc(1, sizeof(Master_Boot_record));
fseek( disk , 0 * SECTOR_SIZE, SEEK_SET );
fread(mbr, 1, SECTOR_SIZE, disk);
memcpy(mbr->code, bootloader_mbr->code, 446);
write_data_to_disk(0, 1, mbr); // Write this to the first sector of the disk.
lsfs_disk_load_disk(NULL); // Reload disk
return 0;
}
int lsfs_disk_install_vbr(char *vbr_path)
{
struct stat st;
stat(vbr_path, &st);
FILE *vbr = fopen ( vbr_path , "r+b" );
Volume_Boot_record *vbr_first_sector = calloc(1, SECTOR_SIZE);
void *vbr_buffer_rest = calloc(1, (SPACE_VBR_RECORD * SECTOR_SIZE - 1));
// First load first sector
fseek(vbr, 0, SEEK_SET);
fread(vbr_first_sector, 1, SECTOR_SIZE, vbr);
fseek(vbr, SECTOR_SIZE, SEEK_SET);
fread(vbr_buffer_rest, 1, (st.st_size - SECTOR_SIZE), vbr);
vbr_first_sector->vbr_size_in_bytes = st.st_size;
vbr_first_sector->vbr_LBA_address = p_control.fsci.this_partition_offset_on_disk - SPACE_VBR_RECORD;
vbr_first_sector->vbr_LBA_FSCI_position = p_control.fsci.this_partition_offset_on_disk;
vbr_first_sector->vbr_signature = 0x1818;
printf("VBR size: %lu\n", vbr_first_sector->vbr_size_in_bytes);
printf("VBR lba address: %lu\n", vbr_first_sector->vbr_LBA_address);
printf("VBR FSCI: %lu\n", vbr_first_sector->vbr_LBA_FSCI_position);
write_data_to_disk((p_control.fsci.this_partition_offset_on_disk - SPACE_VBR_RECORD), 1, vbr_first_sector); // Write this to the first sector of the disk.
write_data_to_disk((p_control.fsci.this_partition_offset_on_disk - SPACE_VBR_RECORD + 1), (SPACE_VBR_RECORD - 1), vbr_buffer_rest); // Write this to the first sector of the disk.
Master_Boot_record mbr;
fseek( disk , 0 * SECTOR_SIZE, SEEK_SET );
fread(&mbr, 1, sizeof(mbr), disk);
if (mbr.mbr_signature == 0xaa55 )
{
mbr.partitions[0].active_falg = 0x80; // TODO(Jørn) Hardcoded partition.
write_data_to_disk(0, 1, &mbr);
}
else
{
return -EINVAL;
}
return 0;
}
int lsfs_disk_load_disk(char* diskname)
{
// Find the partition talbe:
// This makes is BIOS dependent.
// UEFI is not supported.
if (diskname != NULL)
{
disk = fopen ( diskname , "r+b" );
}
else if (disk == NULL )
{
return -1;
}
time(&timestamp_loading);
Master_Boot_record mbr;
fseek( disk , 0 * SECTOR_SIZE, SEEK_SET );
fread(&mbr, 1, sizeof(mbr), disk);
if (mbr.mbr_signature != 0xaa55 )
{
// Means that it is a sigle partition we try to mount
fseek(disk, (SPACE_VBR_RECORD * SECTOR_SIZE), SEEK_SET );
fread(&p_control.fsci, 1, SECTOR_SIZE , disk);
//printf("next free sector: %d\n", p_control.fsci.next_free_sector);
//printf("next free ID: %d\n", p_control.fsci.next_uniqe_id);
// next we find the Mater Table.
fseek (disk, (p_control.fsci.master_table_index * SECTOR_SIZE), SEEK_SET );
fread(&p_control.master_table, 1, DEFAULT_TABLE_SIZE * SECTOR_SIZE , disk);
return 1;
}
else
{
for (int i = 0; i < NUMBER_OF_MBR_PARTITIONS; ++i)
{
// TODO (Jørn) We maybe wnat to optimize, such that we can detect if we have more than one partition opn the system.
if (mbr.partitions[i].partition_type == 0x18)
{
// First we find the File system control information.
fseek(disk , ((mbr.partitions[i].LBA_abs_first_sector + SPACE_VBR_RECORD) * SECTOR_SIZE), SEEK_SET );
fread(&p_control.fsci, 1, SECTOR_SIZE , disk);
// next we find the Mater Table.
fseek (disk, (p_control.fsci.master_table_index * SECTOR_SIZE), SEEK_SET );
fread(&p_control.master_table, 1, DEFAULT_TABLE_SIZE * SECTOR_SIZE , disk);
return 1;
}
}
}
return 0;
}
int lsfs_disk_create_entry(const char* path, Table_Entry_Kind entry_kind)
{
// First check if file exist:
lsfs_file *file = calloc(1, sizeof(lsfs_file));
if (lsfs_disk_getattr(file, path))
{
return -EINVAL;
}
free(file);
// Start from the master table
int free_index = -1; // -1 is no index found.
Directory_Table *dir_table = calloc(1, sizeof(Directory_Table));
read_data_from_disk(p_control.fsci.master_table_index, DEFAULT_TABLE_SIZE, dir_table);
lsfs_sector_offset table_disk_position = p_control.fsci.master_table_index;
lsfs_string_array split_path = lsfs_string_split_c(path, '/', false);
lsfs_string filename = split_path.strings[split_path.length-1];
//printf("spilt length: %d\n", split_path.length);
for (int i = 0; i < split_path.length -1; ++i)
{
for (int j = 0; j < DEFAULT_TABLE_SIZE; ++j)
{
if (strcmp(dir_table->entries[j].filename, split_path.strings[i].chars) == 0)
{
// We have found the next directory to traverse.
//printf("Get next dir at sector: ");
table_disk_position = dir_table->entries[j].data_pointer[0];
//printf("%d\n", table_disk_position);
read_data_from_disk(table_disk_position, DEFAULT_TABLE_SIZE, dir_table);
break;
}
}
}
for (int table_index = 0; table_index < DEFAULT_TABLE_SIZE; ++table_index)
{
// Find free index.
if (dir_table->entries[table_index].entry_kind == ENTRY_EMPTY)
{
// Set the free index, continue to see if the filename exist.
// if not -1, we have found a better index.
if (free_index == -1)
{
//printf("Index found for file: %d\n", table_index);
table_disk_position += table_index; // Abselout index in file system
free_index = table_index;
}
}
}
if (free_index == -1)
{
// The table is full, and we cannot create an entry
return -EINVAL;
}
// Find the entry for the file in the table structure:
dir_table->entries[free_index].file_id = p_control.fsci.next_uniqe_id;
p_control.fsci.next_uniqe_id++;
sprintf(dir_table->entries[free_index].filename, "%s", filename.chars);
dir_table->entries[free_index].entry_kind = entry_kind;
dir_table->entries[free_index].table_entry_sector_index = table_disk_position;
if (entry_kind == ENTRY_DIRECTORY)
{
dir_table->entries[free_index].data_pointer[0] = get_free_sectors_table();
dir_table->entries[free_index].file_size = DEFAULT_TABLE_SIZE * SECTOR_SIZE;
}
else if (entry_kind == ENTRY_FILE)
{
// We assign one data pointer consiting of DEFAULT_DATA_POINTER_SIZE sectors
dir_table->entries[free_index].file_size = 0;
get_free_sectors(1, &(dir_table->entries[free_index]));
}
else
{
return -EINVAL;
}
/*
find_file->creation_date = (uint64_t) current_time;
find_file->access_time = (uint64_t) current_time;
find_file->modification_time = (uint64_t) current_time;
find_file->data = p_control.master_table.entries[i].data_pointer;
find_file->owner_id = getuid();
new_file_data.owner_id = getuid();
time_t current_time;
time ( &current_time );
*/
//printf("File is written to sector: %d\n", table_disk_position);
write_data_to_disk(table_disk_position, DEFAULT_ENTRY_SIZE, &dir_table->entries[free_index]);
return 0;
}
int save_modified_file_information(lsfs_file* file) {
// Write the file struct into the table_entry, such that we can save the data correct.
Table_Entry *entry = calloc(1, sizeof(Table_Entry));
read_data_from_disk(file->table_entry_sector_index, DEFAULT_ENTRY_SIZE, entry);
//entry.file_id = file->file_id;
memcpy(entry->filename, file->filename, 256);
entry->file_size = file->size; // p_control.master_table.entries[i].data_pointer[0]; //;
memcpy(entry->data_pointer, file->data_pointer, NUM_DATA_POINTERS * 8);
write_data_to_disk(file->table_entry_sector_index, DEFAULT_ENTRY_SIZE, entry);
return 0;
}
int write_data_to_disk(lsfs_sector_offset index, uint32_t number_sectors, void* data_to_write) {
fseek ( disk, (index * SECTOR_SIZE), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int written = fwrite(data_to_write, 1, (number_sectors * SECTOR_SIZE), disk);
return written;
}
int write_data_to_disk_off(lsfs_sector_offset index, uint32_t number_sectors, void* data_to_write, int offset) {
fseek ( disk, ((index * SECTOR_SIZE) + offset), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int written = fwrite(data_to_write, 1, ((number_sectors * SECTOR_SIZE) - offset), disk);
return written;
}
int read_data_from_disk(lsfs_sector_offset index, uint32_t number_sectors, void* data_buffer) {
fseek ( disk, (index * SECTOR_SIZE ), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int read = fread(data_buffer, 1, (number_sectors * SECTOR_SIZE), disk);
return read;
}
int read_data_from_disk_off(lsfs_sector_offset index, uint32_t number_sectors, void* data_to_write, int offset) {
fseek ( disk, ((index * SECTOR_SIZE) + offset), SEEK_SET ); // SEEK_SET start offset at index 0 and move 1 * SECTOR_SIZE, and write here.
int written = fread(data_to_write, 1, ((number_sectors * SECTOR_SIZE) - offset), disk);
return written;
}
#endif